

yScalable, a Code for Calculating Probability of

Incapacitation for Multi-Round Munitions

by Robert J. Yager

ARL-TR-6297 January 2013

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless

so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the

use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-6297 January 2013

yScalable, a Code for Calculating Probability of

Incapacitation for Multi-Round Munitions

Robert J. Yager

Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

January 2013

2. REPORT TYPE

Final

3. DATES COVERED (From - To)

March 2012–September 2012
4. TITLE AND SUBTITLE

yScalable, a Code for Calculating Probability of Incapacitation for Multi-Round

Munitions

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Robert J. Yager

5d. PROJECT NUMBER

AH80
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory

ATTN: RDRL-WML-A

Aberdeen Proving Ground, MD 21005-5066

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-6297

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

yScalable is a stand-alone C++ code that can be used to calculate Probability of Incapacitation (PI) values for a barrage of

multi-round munitions deployed against a fixed set of personnel targets. Functions and methodologies that were developed to

evaluate high-explosive-munition lethality and collateral damage have been adapted and extended to provide analytic

capabilities that didn’t previously exist.

15. SUBJECT TERMS

CASRED, C++ probability of incapacitation, multiple detonation warheads

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

30

19a. NAME OF RESPONSIBLE PERSON

Robert J. Yager
a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

410-278-6689

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures v

List of Tables vi

Acknowledgments vii

1. Introduction 1

2. Definitions 1

3. Simplifying Assumptions 2

4. Methodology 2

5. Geometry 2

5.1 Target Locations ..3

5.2 Munition-Reference Locations ..3

5.3 Round-Detonation Locations ..3

6. Input Files 4

6.1 Master-Input File ...4

6.2 Munition-Aimpoint File ..5

6.3 Round-Detonation File ..5

5.4 Target-Location File ..6

6.5 PI-Grid File..6

7. Output Files 8

7.1 Average Number of Incapacitations Per Iteration ...8

7.2 Average PI ...8

7.3 Probability of Incapacitating 100% of Targets ..8

7.4 Average Maximum Distance From Origin to Impact ...9

 iv

8. Running yScalable 9

Appendix. Code 11

Distribution List 20

 v

List of Figures

Figure 1. Coordinates used by the yScalable program. ..3

Figure 2. Master-input file. ...5

Figure 3. Sample munition-location file. ..5

Figure 4. Sample round-detonation file. ...6

Figure 5. Sample target-location file. ...6

Figure 6. Sample annotated PI-grid file. ...7

Figure 7. Sample output file (with simulated values). ..8

 vi

List of Tables

Table 1. Master-input file. ..4

vii

Acknowledgments

The author would like to thank Mr. Richard Pearson of the U.S. Army Research Laboratory’s

Weapons and Materials Research Directorate for his technical and editorial recommendations.

viii

INTENTIONALLY LEFT BLANK.

1

1. Introduction

yScalable is a stand-alone C++ code that can be used to calculate Probability of Incapacitation

(PI) values for a barrage of multi-round munitions deployed against a fixed set of personnel

targets. Functions and methodologies that were developed to evaluate high-explosive-munition

lethality and collateral damage1 have been adapted and extended to provide analytic capabilities

that didn’t previously exist.

2. Definitions

To avoid confusion, several terms have been chosen to describe the different types of projectiles

and projectile groups that are associated with a multi-detonation warhead. This set of definitions

is not universally accepted and, thus, should be used with caution outside the scope of this report.

Fragment: A fragment is a piece of metal that has been produced as the result of the detonation

of an explosive projectile.

Round: A round is a device that contains a single explosive charge and produces fragments

when detonated.

Munition: A munition is a gun-launched projectile that may contain multiple rounds.

Barrage: A barrage is a set of munitions that are intended to work together to incapacitate a

single target set, where a single target set consists of multiple personnel targets.

Iteration: The yScalable program uses a Monte Carlo method to calculate probabilities. As is

the case with all Monte Carlo methods, random sampling is used to vary the outcome of a given

scenario. Each repetition of the scenario is referred to as an iteration.

1Oberle, W.; Butler, P. Development of a Performance Model to Evaluate High-Explosive Munition Lethality and Collateral

Damage; ARL-TR-4932; U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, 2009.

2

3. Simplifying Assumptions

• For a given iteration, the timing between barrages is assumed to be short enough that the

postures and locations of personnel targets do not change.

• The locations of personnel targets are known exactly.

• Although the delivery error that is associated with munitions does affect round placement,

there is no delivery error that is specific to the rounds within a munition.

4. Methodology

For each iteration of a Monte Carlo run, two values are calculated.

1. The total number of target personnel that were incapacitated, and

2. The distance from the origin to the detonation point of the round that landed the farthest

from the origin.

The above two values are used to calculate four values for the entire Monte-Carlo simulation.

1. The average number of personnel that were incapacitated per iteration,

2. The average probability of incapacitation,

3. The probability of incapacitating 100% of all targets, and

4. The average maximum distance from the origin to a detonation.

5. Geometry

As shown in figure 1, two Cartesian coordinate systems are used by the yScalable program. A

primary coordinate system (shown in blue) is used to specify target locations and munition

reference locations. Secondary coordinate systems (shown in red) are used to specify round-

detonation locations. Both coordinate systems are assumed to lie in the ground plane, thus all

locations are specified in two dimensions.

3

x

y

x

y

target

munition reference

round detonation

Figure 1. Coordinates used by the yScalable program.

5.1 Target Locations

Target locations are specified in target-location files (see section 6.4) and are referenced to the

primary coordinate system. Exactly one personnel target is assumed to exist at each target

location. Target-location error is assumed to be zero.

5.2 Munition-Reference Locations

Munition-reference locations specify the origins of secondary Cartesian coordinate systems.

They allow round-detonation locations to be varied without disturbing overall round-detonation

patterns. Munition-reference locations are obtained by combining the munition aimpoints that

are found in munition-aimpoint files (see section 6.2) with a randomly chosen offset. Offsets are

selected by drawing two normally-distributed random numbers, each with a standard deviation

that is uniquely determined by the Circular Error Probable (CEP) for the simulation. CEP values

are specified in master-input files (see section 6.1). Equation 1 shows the relationship between

standard deviation and CEP.

1

2 ln(2)
x y CEP . (1)

5.3 Round-Detonation Locations

Round-detonation locations specify the detonation points of rounds with respect to munition-

reference locations (i.e., they are specified in secondary coordinates). Although there is no

explicit error associated with round-detonation locations, their locations are affected by the CEP

that is specified for munition aimpoints.

4

6. Input Files

The yScalable program requires five input files: one master input file and four auxiliary files.

6.1 Master-Input File

The master-input file specifies all scenario parameters, as well as the names of four auxiliary

files. Table 1 gives a line-by-line description of the master-input file, while figure 2 presents a

sample master-input file. Three types of lines are present in the master-input file. Each type is

color coded to aid in identification.

Comment Lines: Comment lines must be present in the master-input file, even if they are simply

blank lines. They can contain any information that the user deems helpful. They can begin with

any character.

Numeric Parameters: Lines containing numeric parameters must begin with a number.

Comments are allowed to follow the numerical values but must be separated from numeric

values by one or more spaces. No special symbol is required to denote a comment.

Auxiliary-File Names: Lines containing the names of auxiliary files must begin with the path

and name of an auxiliary file. Comments are not allowed.

Table 1. Master-input file.

Line Description

1 comment line

2 comment line

3 This line specifies the number of calls used to initialize the pseudorandom number generator, thus

allowing the user to specify the starting point for the sequence of pseudorandom numbers that is generated

by the pseudo-random number generator.

4 This line specifies the Circular Error Probable (CEP) for all munitions (note that CEP for rounds is 0.0).

5 This line specifies the number of iterations that will be performed in the Monte Carlo simulation.

6 This line specifies the number of barrages per iteration.

7 This line specifies the number of munitions per barrage.

8 comment line

9 This line specifies the path and name of a munition-location file.

10 This line specifies the number of rounds per munition.

11 comment line

12 This line specifies the path and name of a round-detonation file.

13 This line specifies the number of targets in the target set.

14 comment line

15 This line specifies the path and name of a target-location file.

16 comment line

17 This line specifies the path and name of a PI-grid file.

5

This file was created automatically on 2012-01-23 at 12:47:34

using the BillModIn.exe program.

40000 # Number of calls to initialize random number generator

10.00 # CEP for munitiions (CEP for rounds is 0)

100000 # Number of iterations

1 # Number of barrages per iteration

3 # Number of munitions per barrage

Next line is the munitions location file

munition_files\11.mun

1 # Number of rounds per munition

Next line is the location of the rounds within a single munition

weapon_directories\155\155.rnd

30 # Number of targets

Next line is the IC formation locations file

target_files\tgt1platoonv30man.txt

Next line is the Pi grid table for the given range

weapon_directories\155\polarbaseH6.a5m

Figure 2. Master-input file.

6.2 Munition-Aimpoint File

Munition-aimpoint files specify the munition aimpoints that are described in section 5.2. Recall

that munition aimpoints are unperturbed munition-reference locations. Figure 3 presents a

sample munition-aimpoint file. Each line of the file represents the aimpoint of a munition in the

primary coordinate system. Two entries are required per line. The first entry is the x-coordinate

of the munition, the second entry is the y-coordinate. Note that the aimpoint file may contain

more aimpoints than the number of munitions specified in the master-input file. If that is the

case, then munition aimpoints are taken from the beginning of the munition aimpoint file until

the required number of aimpoints has been reached.

0.0 0.0

10.0 10.0

-10.0 -10.0

Figure 3. Sample munition-location file.

6.3 Round-Detonation File

Round-detonation files specify the detonation locations of rounds with respect to munition-

reference locations.

Figure 4 presents a sample round-detonation file. Each line of the file represents the detonation

location of a round in a secondary coordinate system. Two entries are required per line. The

first entry is the x-coordinate, the second entry is the y-coordinate. Note that the round-

detonation file may contain more detonation points than the number of rounds specified in the

master-input file. If that is the case, then round-detonation points are taken from the beginning

of the round-detonation file until the required number of detonation points has been reached.

6

0 0

1 1

1 -1

-1 1

-1 -1

Figure 4. Sample round-detonation file.

5.4 Target-Location File

Target-location files specify the locations of all personnel targets. Each line of the file represents

the location of a single target in the primary coordinate system. Two entries are required per

line. The first entry is the x-coordinate, the second entry is the y-coordinate. Note that the

target-location file may contain more target locations than the number of targets specified in the

master-input file. If that is the case, then target locations are taken from the beginning of the

target-location file until the required number of target locations has been reached.

0 0

-12.7 0

12.7 0

-7.16 6.36

7.16 6.36

Figure 5. Sample target-location file.

6.5 PI-Grid File

PI-grid files contain tabulated PI values as a function of distance from a detonation and an

azimuthal angle that is referenced from a fragmentation round’s velocity vector at the time of

impact. PI-grid files can be produced by several different sources including CASRED,2

MUVES-S2,3 and JMAE.4 Figure 6 presents a sample PI-grid file.

2Butler, S. Casualty Reduction (CASRED) Model - Source Code Documentation; U.S. Army Materiel Systems Analysis

Activity, 1975.
3Yager, R. J. A C++ Postprocessor for Modifying Probability-of-Kill Grids Created by the Joint Mean Area of Effects

(JMAE) Model; ARL-TR-4982; U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, 2009.
4Yager, R. J. A C++ Postprocessor for Converting MUVES-S2 Vehicle-Centered Lethality Grids to Detonation-Centered

Grids; ARL-TR-5448; U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, 2011.

7

CASE 1, 40. METERS, VT = 3772.0 FT/SEC TYPE10 a5m 12 BH7

 0.000 1.0 20.0 800.0 2.0 5 35 91 41 1 2.86000

 1.000000

 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01

 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01

 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01

 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01

 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.97924E+00

 0.28641E-01 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.46825E-07 0.46825E-07 0.46825E-07

 0.46826E-07 0.46826E-07 0.46826E-07 0.46826E-07 0.46826E-07 0.46825E-07

 0.46825E-07

 1.820564

 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01

 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01

 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01

 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01 0.10000E+01

 0.99999E+00 0.92111E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.46741E-07 0.46741E-07 0.46741E-07 0.46741E-07 0.46741E-07

 0.46741E-07

 800.000000

 0.15735E-03 0.15933E-03 0.34046E-03 0.32127E-03 0.23862E-03 0.27877E-03

 0.12219E-03 0.11448E-03 0.98045E-04 0.94377E-04 0.92118E-04 0.14979E-03

 0.15186E-03 0.14887E-03 0.17639E-03 0.20028E-03 0.17790E-03 0.20161E-03

 0.18633E-03 0.26321E-03 0.24879E-03 0.41438E-03 0.42749E-03 0.58597E-04

 0.67011E-04 0.10491E-10 0.94247E-11 0.33267E-10 0.17392E-10 0.50496E-11

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

 0.00000E+00

case number

gun range (in meters)
terminal velocity

(in feet/second)
weapon name PI criteria

flags

detonation
height (in

feet)

minimum r-value

for logarithmic
section (in feet)

maximum r-value

for logarithmic
section (or

minimum value

for linear section)
(in feet)

maximum r-

value for
linear section

(in feet)

Δθ (in degrees)

number of r-
values in

logarithmic

section, not
counting the

maximum r-

value for the
logarithmic

section

number of

r-values in
linear

section, not

counting
the

minimum r-

value for
the linear

section

number

of polar
angles

(range is

0º to
180º)

total

number

of r-
values

angle of fall

(in degrees)

Distances from

detonation,

measured in the
ground plane. Also

known as “r-

values” (in feet)

a portion of the table has been removed

PI values for r = 1.820564 feet and for ascending polar-angle values (starting with 0°)

r

The polar angle (θ) is
measured in the

ground plane relative

to the horizontal

component of the

terminal-velocity

vector.

PI values are assumed

to be symmetric for

positive and negative

values of θ, thus θ

only ranges from 0° to

180°.

The origin of the

coordinate system is
located directly below

the detonation point.

t
v

Figure 6. Sample annotated PI-grid file.

8

7. Output Files

Each time that the yScalable program is run, a single output file is created. Output files contain

the date and time that the file was created, a restatement of the input parameters and auxiliary

filenames contained in the master-input file, and four values that represent a summary of the

scenario. Figure 7 presents a sample yScalable output file.

Date Run: 01/24/12,Time: 08:33:15

Input File: input_files_temp\SampleMI.txt

Target Formation Location File: target_files\SampleTarget.txt

Munition Location File: munition_files\Sample.mun

Round Location File: weapon_directories\Sample.rnd

Using P(i) file: weapon_directories\Sample.a5m

The average number of incapacitations per iteration is: 30.0000

The average Pi is: 0.9500

The probability of incapacitating 100% of targets is: 0.9500

The average maximum distance from origin to impact is: 30.0000

The number of iterations is: 100000

The number of barrages per iteration is: 5

The number of munitions per barrage is: 3

The number of rounds per munition is: 1

Figure 7. Sample output file (with simulated values).

7.1 Average Number of Incapacitations Per Iteration

In order to calculate the average number of incapacitations per iteration, a list that tracks whether

or not each target has been incapacited in a given Monte Carlo iteration is used. At the end of

each iteration, the total number of incapacitations is counted. This method ensures that, for a

given iteration, no target is counted as having been incapacitated more than once.

7.2 Average PI

The average PI is calculated by dividing the average number of incapacitations per iteration by

the number of targets.

7.3 Probability of Incapacitating 100% of Targets

For each iteration, it is determined whether or not all of the targets were incapacitated. The

probability of incapacitating 100% of targets is then calculated by dividing the number of times

that all of the targets were incapacitated by the number of iterations.

9

7.4 Average Maximum Distance From Origin to Impact

For each iteration, the distance from the origin to the impact point of each round is calculated,

then the maximum distance is stored. These values are used to calculate the average maximum

distance from the origin to impact.

8. Running yScalable

The yScalable program can be run directly from the command line or from a script. To start the

program type the name of the compiled executable file followed by the name of the master-input

file followed by the name of the output file (e.g., “y_scalable.exe sample_input.txt

sample_output.txt”).

10

INTENTIONALLY LEFT BLANK.

11

Appendix. Code

This appendix appears in its original form, without editorial change.

12

y_scalable_main.cc

/***
* yScalable *
* Rob Yager, 10JAN2011 (last updated 24JAN2012) *
***/
#include "oberle_aimpoint_tools.h"
#include <vector>
/****************************STRUCTS AND TYPEDEFS******************************/
struct PAIR{double x , y;};//...................................x-y ordered pair
typedef vector<PAIR> PAIRS;//..................................1D array of PAIRs
/***********************GLOBAL, USER-DEFINED PARAMETERS************************/
char cMunsInBar[150];//..................file containing aim points of munitions
char cRdsInMun[150];//......................file containing aim points of rounds
char cTargetLocation[150];//......file containing locations of personnel targets
char cPiTable1[150];//..................................file containing Pi table
double dPiTable1[200][92]={0};//..Pi table
int iRandu;//..........number of calls to initialize the random-number generator
int iterations;//............................total number of scenarios to be ran
int iNumBar;//..............................number of barrages in each iteration
int iNumMun;//...............................number of munitions in each barrage
int iNumRds;//.............................number of rounds within each munition
int iNumTargets;//...................................number of personnel targets
int iLinesPiTable1;//............................number of lines in the Pi table
double dcep;//...CEP for munitions
PAIRS MUNS;//............locations of aim points for munitions (from cMunsInBar)
PAIRS RNDS;//.........offset locations of aim points for rounds (from cRdsInMun)
PAIRS TARS;//..............locations of personnel targets (from cTargetLocation)
/*****************************GLOBAL VARIABLES*********************************/
double avg_incaps=0;//.........................average number of incapacitations
double avg_r_max=0;//.............average maximum distance from origin to impact
double prob_100=0;//...............probability of incapacitating 100% of targets
/****************************FUNCTION PROTOTYPES*******************************/
void get_vars(char* argv[]);//..................reads variables from input files
double rndm(double avg,double std);//.........overload of Bill's rndm() function
bool incap(PAIR target,PAIR detonation);//.......output of true => incapacitated
void output(char* argv[]);//...............................writes an output file
/************************************MAIN**************************************/
int main(int argc,char* argv[]){
 //-------------------------READ THE INPUT FILE--------------------------------
 get_vars(argv);
 //---------------INITIIALIZE THE RANDOM NUMBER GENERATOR----------------------
 for(int i=0;i<iRandu;++i) rndm(0,1);
 //--------CALCULATE THE AVERAGE NUMBER OF INCAPACITATIONS PER BARRAGE---------
 double sigma=dcep*0.8493218002880191;//.....1/sqrt(2*ln(2))=0.8493218002880191
 for(int i=0;i<iterations;++i){//...................loop through all iterations
 double r_max=0;//.....maximum distance (per iteration) from origin to impact
 vector <bool> INCAPS(iNumTargets , false);//..............incapacitated list
 for(int i2=0;i2<iNumBar;++i2){//......loop through all barrages in iteration
 for(int j=0;j<iNumMun;++j){//........loop through all munitions in barrage
 //- - - - - - calculate the location of the jth munition - - - - - - - -
 PAIR MUN = {MUNS[j].x + rndm(0,sigma) , MUNS[j].y + rndm(0,sigma)};
 for(int k=0;k<iNumRds;++k){//........loop through all rounds in munition
 //- - - - - - calculate the location of the kth round- - - - - - - - -
 PAIR RND = {MUN.x + RNDS[k].x , MUN.y + RNDS[k].y};//round CEP is zero
 r_max=max(r_max,hypot(RND.x,RND.y));

13

 for(int l=0;l<iNumTargets;++l)//..............loop through all targets
 if(!INCAPS[l]) INCAPS[l] = incap(TARS[l],RND);}}}//...incapacitated?
 //- - - - - - - - maintain cumulative moving averages- - - - - - - - - - - -
 int n=0;//........n is the number of incapacitations for the current barrage
 for(int l=0;l<iNumTargets;++l)if(INCAPS[l])n++;//....................tally n
 avg_incaps=(avg_incaps*i+n)/(i+1);//....cumulative avg. # of incapacitations
 avg_r_max=(avg_r_max*i+r_max)/(i+1);//average max dist from origin to impact
 prob_100=((n==iNumTargets?1:0)+i*prob_100)/(i+1);//cumul. avg of 100% incaps
 if(i%1000==999)printf("\rIn iteration number: %d",i+1);}
 //------------------------WRITE THE OUTPUT FILE-------------------------------
 output(argv);
 return 0;
}/*******ROB*YAGER**************10JAN2012********(LAST*UPDATED*11JAN2012)******/
void get_vars(char* argv[]){
 int i;
 ifstream inFile1;
 char cLine[150];
 inFile1.open(argv[1], ios::in | ios::binary);//Input File Name
 if(!inFile1)
 {
 cerr << "Cannot open input file: " << argv[1] << endl;
 cerr << "Program is terminating." << endl;
 exit(1);
 }
 inFile1.getline(cLine,149); //***** Reads comment line #1
 inFile1.getline(cLine,149); //***** Reads comment line #2
 inFile1 >> iRandu ; //***** Random Number initializer
 inFile1.getline(cLine,149); //***** Read rest of line
 inFile1>>dcep; //***** CEP for munitions
 inFile1.getline(cLine,149); //***** Read rest of line
 inFile1>>iterations; //***** number of iterations
 inFile1.getline(cLine,149); //***** Read rest of line
 inFile1>>iNumBar; //***** number of barrages
 inFile1.getline(cLine,149); //***** Read rest of line
 inFile1>>iNumMun; //***** number of munitions
 inFile1.getline(cLine,149); //***** Read rest of line
 inFile1.getline(cLine,149); //***** Reads comment line #3
 inFile1.getline(cMunsInBar,149);//***** Read location of munition in barrage
 //***** Need to remove any carriage returns from string and replace with \0
 for(i = 0; cMunsInBar[i]; i++)
 {
 if((int)cMunsInBar[i] == 13) cMunsInBar[i] = '\0';
 }
 inFile1>>iNumRds; //***** number of Rounds
 inFile1.getline(cLine,149); //***** Read rest of line
 inFile1.getline(cLine,149); //***** Reads comment line #4
 inFile1.getline(cRdsInMun,149); //***** Read location of rounds in munition
 //***** Need to remove any carriage returns from string and replace with \0
 for(i = 0; cRdsInMun[i]; i++)
 {
 if((int)cRdsInMun[i] == 13) cRdsInMun[i] = '\0';
 }
 inFile1>>iNumTargets; //***** number of Targets
 inFile1.getline(cLine,149); //***** Read rest of line
 inFile1.getline(cLine,149); //***** Read comment line #5
 inFile1.getline(cTargetLocation,149); // Read Target Location Table file name
 //***** Need to remove any carriage returns from string and replace with \0
 for(i = 0; cTargetLocation[i]; i++)

14

 {
 if((int)cTargetLocation[i] == 13) cTargetLocation[i] = '\0';
 }
 inFile1.getline(cLine,149); //***** Read comment line #6
 inFile1.getline(cPiTable1,149); //***** Read Pi Table file name
 //***** Need to remove any carriage returns from string and replace with \0
 for(i = 0; cPiTable1[i]; i++)
 {
 if((int)cPiTable1[i] == 13) cPiTable1[i] = '\0';
 }
 inFile1.close();
 //***
 //***** Read munition location within a barrage *****************
 //***
 inFile1.open(cMunsInBar,ios::in | ios::binary);
 if(!inFile1)
 {
 cerr << "Cannot open input file: " << cMunsInBar << endl;
 cerr << "Program is terminating." << endl;
 exit(1);
 }
 for(i = 0; i < iNumMun; i++)
 {
 MUNS.push_back(PAIR());
 inFile1 >> MUNS[i].x >> MUNS[i].y;
 }
 inFile1.close();
 //***
 //***** Read round location within a mnition ********************
 //***
 inFile1.open(cRdsInMun,ios::in | ios::binary);
 if(!inFile1)
 {
 cerr << "Cannot open input file: " << cRdsInMun << endl;
 cerr << "Program is terminating." << endl;
 exit(1);
 }
 for(i = 0; i < iNumRds; i++)
 {
 RNDS.push_back(PAIR());
 inFile1 >> RNDS[i].x >> RNDS[i].y;
 }
 inFile1.close();
 //***
 //******** Read Target Locations ********************************
 //***
 inFile1.open(cTargetLocation,ios::in | ios::binary);
 if(!inFile1)
 {
 cerr << "Cannot open input file: " << cTargetLocation << endl;
 cerr << "Program is terminating." << endl;
 exit(1);
 }
 for(i = 0; i < iNumTargets; i++)
 {
 TARS.push_back(PAIR());
 inFile1 >> TARS[i].x >> TARS[i].y;
 }

15

 inFile1.close();
 //***
 //***** The Pi table is read ************************************
 //***
 iLinesPiTable1 = ReadPiTables(cPiTable1,dPiTable1);
 //***
}/*******ROB*YAGER**************10JAN2012********(LAST*UPDATED*11JAN2012)******/
double rndm(double avg,double std){//.........overload of Bill's rndm() function
 long double x;
 rndm(avg,std,x);
 return x;
}/*******ROB*YAGER**************10JAN2012********(LAST*UPDATED*10JAN2012)******/
bool incap(PAIR target,PAIR detonation){
 double distance,angle;
 DetermineDistanceAngle(target.x,target.y,detonation.x,detonation.y,
 distance,angle);
 return bDeterminePiV(distance,angle,iLinesPiTable1,dPiTable1);
}/*******ROB*YAGER**************10JAN2012********(LAST*UPDATED*10JAN2012)******/
void output(char* argv[]){
 ofstream outFile;
 outFile.open(argv[2], ios::out | ios::binary);//Output File Name
 char dateStr [9];
 char timeStr [9];
 _strdate_s(dateStr);
 _strtime_s(timeStr);
 outFile << "Date Run: " << dateStr << ",Time: " << timeStr << endl;
 outFile << "Input File: " << argv[1] << endl;
 outFile << "Target Formation Location File: " << cTargetLocation << endl;
 outFile << "Munition Location File: " << cMunsInBar << endl;
 outFile << "Round Location File: " << cRdsInMun << endl;
 outFile << "Using P(i) file: " << cPiTable1 << endl << endl;
 outFile.width(6);
 outFile.precision(4);
 outFile.setf(cout.fixed);
 outFile << "The average number of incapacitations per iteration is: "
 << avg_incaps << endl;
 outFile << "The average Pi is: " << avg_incaps/iNumTargets << endl;
 outFile << "The probability of incapacitating 100% of targets is: "
 << prob_100 << endl;
 outFile << "The average maximum distance from origin to impact is: "
 << avg_r_max << endl << endl;
 outFile << "The number of iterations is: " << iterations << endl;
 outFile << "The number of barrages per iteration is: " << iNumBar << endl;
 outFile << "The number of munitions per barrage is: " << iNumMun << endl;
 outFile << "The number of rounds per munition is: " << iNumRds << endl;
 outFile.close();
}/*******ROB*YAGER**************11JAN2012********(LAST*UPDATED*11JAN2012)******/

oberle_aimpoint_tools.h

#ifndef OBERLE_AIMPOINT_TOOLS_H_//...............#define guard (yager, 2012-01-10)
#define OBERLE_AIMPOINT_TOOLS_H_//...............#define guard (yager, 2012-01-10)
#include "Oberle_Nov_2010.h"

//***** Global Varialbes and Fcn Prototypes Used in the Progam

bool bCheckPi;

16

int ReadPiTables(char *,double [200][92]); // Returns number of lines in table
bool bDeterminePiV(double,double,int,double [200][92]);
void DetermineDistanceAngle(double,double,double,double, double &, double &);

int ReadPiTables(char * fileName1, double dPiTab[200][92])
{
 char cLine[120];
 double dHeight, dMaxDist, dDegree, dAngle, x, y;
 int i, j, k, iNum, iNumB,iFileCount = 0;

 ifstream F2P(fileName1,ios::in | ios::binary);
 if(!F2P)
 {
 cerr << "Cannot open input file: " << fileName1 << endl;
 cerr << "Program is terminating." << endl;
 exit(1);
 }
 F2P.getline(cLine,120); //Reads the header line - one time only
 if(bCheckPi) cout << cLine << endl;
 F2P >> dHeight >> x >> y >> dMaxDist >> dDegree >> i >> j >> iNum >> iNumB >> k
>> dAngle;
 F2P.getline(cLine,120);
 if(bCheckPi)
 {
 cout << "iNum: " << iNum << endl;
 cout << "iNumB: " << iNumB << endl;
 }

 for(i = 0; i < iNumB; i++) // Number of distance blocks
 {
 F2P >> x; // Read the distance from impact point
 dPiTab[i][0] = x; // Write distance from impact point to table
 for(j = 0; j < iNum; j++)
 {
 F2P >> y;
 dPiTab[i][j+1] = y; // Write Pi for angle
 }
 }
 F2P.close();

 if(bCheckPi)
 {
 for(j=0;j<iNumB;j++)
 cout << "Line :" << j << "\t" << dPiTab[j][0] << "\t" << dPiTab[j][1] <<
"\t" << dPiTab[j][2] << "\t" << dPiTab[j][iNum-1] << "\t" << dPiTab[j][iNum] << endl;
 system("pause");
 }

 return iNumB;
}
bool bDeterminePiV(double r, double theta,int iLines,double dPiTab[200][92])
{
 int iLowAngle,iLowRadius,i;
 double dAngle,dProbI;
 double A[4][3];
 long double dR;

17

 bool iFlag = false;

 //***** Start by determining the index in *********************
 //***** in the table for the angle ****************************
 //***** Convert angle to degrees ******************************

 dAngle = dRad2Deg(theta); //***** convert angle from radians to degrees
 iLowAngle = (int) floor(dAngle/2 + 1); //***** Angle index is iLowAngle and
iLowAngle+1
 if(iLowAngle == 91) iLowAngle = 90; //***** Just in case angle is 180 degrees

 //***** Determine that range is in table
 if((r < 0) || (r > dPiTab[iLines-1][0])) //Range not in table.
 {
 //cout << "Returned a false on distance\n";
 return false;
 //return 0.0;

 }

 iFlag = false;

 if (r < dPiTab[0][0]) // Positive but less than min distance
 {
 r = dPiTab[0][0];
 }

 if(!iFlag)
 {
 for(i = 0; i < iLines; i++)
 {
 if(r > dPiTab[i][0])
 {
 continue;
 }
 else
 {
 iLowRadius = i-1; //***** Radius index is iLowRadius and iLowRadius+1
 break;
 }
 }
 if(iLowRadius == -1) iLowRadius = 0;
 }

 if(!iFlag)
 {
 A[0][0] = (iLowAngle -1) * 2; //Angle
 A[0][1] = dPiTab[iLowRadius][0]; //Radius
 A[0][2] = dPiTab[iLowRadius][iLowAngle]; //Pi

 A[1][0] = iLowAngle * 2;
 A[1][1] = dPiTab[iLowRadius][0];
 A[1][2] = dPiTab[iLowRadius][iLowAngle+1];

 A[2][0] = iLowAngle * 2;
 A[2][1] = dPiTab[iLowRadius+1][0];
 A[2][2] = dPiTab[iLowRadius+1][iLowAngle+1];

18

 A[3][0] = (iLowAngle -1) * 2;
 A[3][1] = dPiTab[iLowRadius+1][0];
 A[3][2] = dPiTab[iLowRadius+1][iLowAngle];
 }
 else
 {
 A[0][0] = (iLowAngle -1) * 2; //Angle
 A[0][1] = 0; //Radius
 A[0][2] = 1; //dPiTab[iLowRadius][iLowAngle]; //Pi

 A[1][0] = iLowAngle * 2;
 A[1][1] = 0;
 A[1][2] = 1; //dPiTab[iLowRadius][iLowAngle+1];

 A[2][0] = iLowAngle * 2;
 A[2][1] = dPiTab[0][0];
 A[2][2] = dPiTab[0][iLowAngle+1];

 A[3][0] = (iLowAngle -1) * 2;
 A[3][1] = dPiTab[0][0];
 A[3][2] = dPiTab[0][iLowAngle];
 }

 dProbI = dBilinear(dAngle,r,A);

 randu(0.0,1.0,dR);
 //cout << "the random number is: " << " " << dR << endl;
 if(dR <= dProbI) return true;

 return false;

 //return dProbI;
}

void DetermineDistanceAngle(double dXTemp, double dYTemp,double dX,double dY,double
&distance,double &angle)
{
 double dTemp1,dTemp2,dTemp3,dTemp4,distanceM;
 double TrueAngle;

 dTemp1 = dXTemp - dX;
 dTemp2 = dYTemp - dY;
 //the vector (dTemp1,dTemp2) is the vector from the impact point to the target i

 dTemp3 = (dXTemp - dX)*(dXTemp - dX);//square of the difference in x poisition (x
is range)
 dTemp4 = (dYTemp - dY)*(dYTemp - dY);//square of the difference in y poisition (y
is azimuth)
 dTemp4 = sqrt(dTemp3+dTemp4);//distance between the impact point and target i in
meters
 distanceM = dTemp4;//distance in meters

 //***** now the vector <1,0> is the direction of the round; i.e., have no yaw
information so
 //***** assuming round is flying in a straight line parallel to the range axis.

19

 //***** Thus, the dot product between the vector <1,0> and the vector
 //***** from the impact point to the target location is dXTemp1.
 dTemp4 = dTemp1/distanceM;//dot product divided by distance no units

 angle = acos(dTemp4); //Angle between vectors; this value is between 0 and Pi
[0,180]
 //***** degrees; this value is in radians; 0 degrees is along the range axis;

 if(dYTemp < dY)// gives the true angle between the impact pt and target;
 //***** will use negative angles between 0 and 180 instead of 180 to 359
 //***** informational only
 {
 TrueAngle = - angle;
 }
 distance = distanceM/.3048;// Convert from meters to feet (could mul by
3.280839895)
 if(distance <= 0) distance =.0001;

 return;

}

#endif//...................................end #define guard (yager, 2012-01-10)

NO. OF NO. OF

COPIES ORGANIZATION COPIES ORGANIZATION

 20

 1 DEFENSE TECHNICAL

 (PDF INFORMATION CTR

 only) DTIC OCA

 8725 JOHN J KINGMAN RD

 STE 0944

 FORT BELVOIR VA 22060-6218

 1 DIRECTOR

 US ARMY RESEARCH LAB

 IMAL HRA

 2800 POWDER MILL RD

 ADELPHI MD 20783-1197

 1 DIRECTOR

 US ARMY RESEARCH LAB

 RDRL CIO LL

 2800 POWDER MILL RD

 ADELPHI MD 20783-1197

 1 US ARMY ARDEC

 AMSRD AAR AIS SA

 D ERICSON

 BLDG 12

 PICATINNY ARSENAL NJ 07806-5000

 1 US ARMY ARDEC

 RDAR MEE W

 A DANIELS

 BLDG 3022

 PICATINNY ARSENAL NJ 07806

ABERDEEN PROVING GROUND

22 DIR USARL

(20 HC RDRL WM

 2 CD) P BAKER

 P PLOSTINS

 RDRL WML

 M ZOLTOSKI

 RDRL WML A

 P BUTLER

 W OBERLE (1 CD)

 C PATTERSON

 R PEARSON

 L STROHM

 R YAGER (4 HC, 1 CD)

 RDRL WML B

 J MORRIS

 RDRL WML C

 K MCNESBY

 RDRL WML D

 R BEYER

 RDRL WML E

 P WEINACHT

 RDRL WML F

 T BROWN

 D LYON

 RDRL WML H

 M FERMEN-COKER

 J NEWILL

 B SORENSEN

